
From Notation Theory to
Expression Reduction Systems

Zurab Khasidashvili

Intel, Haifa

Sept 10 2019, Tbilisi, Georgia

Dedicated to Work of Shalva Pkhakadze on the
Centenary of His Birth

Our goal in this talk is to describe contribution of the Notation Theory of
Shalva Pkhakadze to the theory of Higher Order Rewrite Systems

Term Rewriting Systems -- an example

Rewrite rules for Peano arithmetic

• A(x,0) -> x
• A(x,S(y)) -> S(A(x,y))
• M(x,0) -> 0
• M(x,S(y)) -> A(M(x,y), x)

• Numbers: 0, S(0), S(S(0)), …
• Examples of reductions (contraction of redexes)

• M(S0,S0) -> A(M(S0,0),S0) -> A(0,S0) -> SA(0,0) -> S0
• M(S0,S0) -> A(M(S0,0),S0) -> SA(M(S0,0),0) -> SA(0,0) -> S0
• S0 is a normal form (contains no redexes, no further reduction is possible)

Axioms of Peano Arithmetic

• x+0 = x

• x+(y+1) = (x+y)+1

• x*0 = 0

• x*(y+1) = x*y+x

Lambda Calculus

• Formalizes computation; has the same computational power as Turing Machines

• Expressions (terms) are built using two operations:
• Abstraction: λx; example: λx.M

• Application: (MN), which abbreviates @(M,N)

• Beta rule: (λx.M)N -> (M/x)N
@(λx.M, N) -> (M/x)N

• Substitution
• (λx.x)N -> N

• (λx.y)N -> y

• (λx.(λx.xy)) N -> λx.xy

• (λz.(λx.xy)) N -> λx.xy – renaming of bound variables

Quantifiers in First Order Logic

• Existential quantifier: ∃x.φ(x)

• Universal quantifier: ∀x.φ(x)

• Expressions are considered as same up to renaming of bound
variables:
• ∃x.φ(x) ≡ ∃y.φ(y)

• Defined symbols of the form σ a1…an (A1,….,Am) -- B
• Hilbert’s choice operator τ: ∃aA --- (τx(A)/a) A
• Exits Unique operator ∃!: ∃!aA ---- ∃aA∧∀a∀b(A∧(b/a)A→a = b),

Definition of symbols with binding power

• Need to define rigorous rules to make definition of quantifiers sound
– avoid any collision between free and bound variables

• Such a definition will allow meta-level reasoning on properties of such
symbols when considered as rewrite rules

• For example, Boubaki in Elements of Mathematics, Chapters 1 & 2,
introduced “defined symbols” without a formal definition of what a
“definition” of a new symbol (a quantifier or a function) is; thus they
couldn’t prove any general properties of defined symbols and
extensions of theories with defined symbols. The Notation Theory
was introduced by Sh. Pkhakadze to fix this situation

Definition of contracting symbols of type IV

• Let a1,...,am be metavariables such that each ai ranges over the class of all
predicate or object quantifier variables or letters; and let A1,...,An be
metavariables such that each Aj ranges over the class of all formulas or all terms.
The definition of a contracted symbol σ of type IV has a form

σa1 ...amA1 ...An --- B

where a1,...,am,A1,...,An are metavariables, each ranged over a class of
quantifier letters or forms (as specified above), and B is a form constructed using
the main and already introduced contracting symbols, metavariables a1,...,am,
b1,...bk, and (/)-substitutions. A system of values a’1...a’m,A’1,...A’n,b’1,...,b’k is
admissible if b’1,...,b’k are mutually different, are different from a’1,...a’m, do not
have free occurrences in A’1,...A’n, and do not have (any) occurrences in B.

• Example (exits unique): ∃!aA ---- ∃aA∧∀a∀b(A∧(b/a)A→a = b),

Definition of contracting symbols of types I-III

• If we require that B contains no (/)-substitutions, then from
definitions of types IV we get definitions of type II
• Example (subset operator): ⊆AB ---- ∀b(b∈A→b∈B).

• And if we require that the list of additional metavariables b1,...,bk be
empty, we get definitions of types I and III from the definitions of
types II and IV, respectively.
• There are also contracting symbols of types IV’ and II’; their definitions are

slight adaptations (and do not change the expressive power) of definitions of
types IV and II, respectively; and there are also definitions of a few other
types designed to illustrate that relaxing constraints on definitions of types I-
IV would result in loss of many desirable properties of contracted symbols

Some work on theory of contracting symbols
and extensions
• Khimur Rukhaia -- The description of a derived formal mathematical

T∗ theory, 1983

• Vakhtang Pkhakadze -- Some properties of α-processes, 1988

• Vakhtang Pkhakadze -- Substitution theorems and connection
between δ-processes and α-processes, 1988

• Zurab Khasidashvili – Expression Reduction Systems, 1990

How are Expression Reduction Systems (ERSs)
Different?
• The essential difference is in the left-hand sides of definitions (viewed

as rules): In ERSs, the LHS may be expressions just like the RHS
expression B except they cannot contain substitution operation (/)

• This generality in the LHS allows more computations to be expressed
• The l-Calculus and Term Rewriting Systems are a special case

Some History of rewrite systems with bound
variables and substitution (with no aim or claim of completeness….)

• Main motivating examples/theories
• Thirst Order Logic
• l-calculus – Alonso Church, The Calculi of Lambda Conversion, 1941

• The earliest formalizms (with partial power for rewriting)
• Shalva Pkhakadze – 1977, Some Problems of the Notation Theory
• Peter Aczel – 1978, a General Church-Rosser Theorem

• First full formalization, with proofs of many basic theorems on
confluence and normalization
• Jan Willem Klop – 1980, Combinatory Reduction Systems, PhD thesis

Some other well known formalizms

• Other popular formalizms
• Zurab Khasidashvili – Expression Reduction Systems, 1990
• Tobias Nipkow -- High-Order Rewrite Systems – Tobias Nipkow, 1991
• David Wolfram – Higher-Order Term Rewriting Systems, 1993
• Vincent Van Oostrom and Femke van Raamsdonk – Higher-Order Rewrite

Systems, 1994
• Julien Forest and Delia Kesner -- Expression reduction systems with patterns,

2003
•
• Many more formalizms exist for combining Term Rewriting and λ-Calculus
• A big body of related research is on Explicit Substitution aiming and defining /

implementing substitution as Term Rewriting

Some of the Basic Questions for Rewrite
Systems

• Confluence

• Weak and strong
normalization

• Normalizing and
Perpetual strategies

• Optimal Reduction

A(0,S(0))

S(0)

S(A(0,0))A(S(0), 0)

Peano Arithmetic with
commutativity rule for addition:
A(x,y) -> A(y,x)

Confluence

• Confluence (or Church-Rosser):
Given two computations t ->> s1
and t ->> s2 from the same
expression t, there exist
reductions s1 ->> s and s2 ->> s
to the same expression s

• Confluence implies uniqueness
of a normal form for t (final
result of computation of t) if a
normal form exists

t

s

s2s1

Orthogonal rewrite systems

• Left-liner systems where redex
patterns do not overlap are called
orthogonal.

• Orthogonal rewrite systems are
confluent

• Example: Consider rule
f(f(x)) -> b

and consider expression
t = f(f(f(a)))

There are two redexes in t and
their patterns overlap (form a
critical pair)

f

f

f

a

f

b

b

Weak and Strong Normalization

• Weak Normalization: does an
expression t have a normal
form?

• Strong Normalization: Do all
reductions (computations) of a
term t terminate?

• Weak and strong normalization
are defined for the Rewrite
Systems – is any expression on
the system weakly/strongly
normalizing?

• Let w = lx.(xx)lx(xx) and v = (ly.
z)w. Then:

• w has an infinite reduction w ->
w -> w -> …..

• Thus v has an infinite reduction
contracting the subexpression w
within v: v -> v -> v ->….

• W foes not have a normal form
but v does: v = (ly. z)w -> z
• W is erased because variable y

does not occur in expression z

Normalizing and Perpetual Strategies

• For expressions that have a normal
form and also have an infinite
reduction (computation):
• Normalizing strategies: is there a way

to choose the order of computations
that guarantees reaching a normal
form?

• Optimal reductions: How can we
construct a normal form in least
number of steps / with a minimal
cost? Sharing of redexes or Graph
rewriting is often used.

• Perpetual strategies: is there a way to
choose the order of computations
that guarantees construction of an
infinite reduction?

• An example normalizing strategy in
orthogonal systems:
• Parallel outermost strategy is

normalizing: The strategy that
contracts all outermost redexes in a
term is normalizing

• Outermost-fair strategy is
normalizing: every outermost redex
must eventually be contracted.

• For Rewrite Systems where the rules
have the form of contracting symbols
of types I-IV, innermost needed
reductions are the shortest and can
be computed effectively

Thank You

