
Logical Grammars for Natural Language: Syntax,
Semantics, and their interface

Aleksandre Maskharashvili∗

The First Tbilisi International Summer School in Logic, Language,
Artificial Intelligence

9 September – 15 September 2019

Contents
1 Preliminary notions: Alphabet, Languages, Grammars 3

2 Phrase Structure Grammars 5

3 The Chomsky Hierarchy of Grammars 9

4 Context-Free Grammars 11
4.1 Introduction . 11
4.2 Definition and examples of CFGs . 11
4.3 Derivation Trees . 13

5 Parsing 16

6 Abstract Categorial Grammars 17
∗Please send your questions, comments or remarks to aleksandre.maskharashvili@gu.se

1

B Relations 21
B.1 Transitive Closure . 22
B.2 n-ary relations . 24

C How to obtain a yield of a tree – what a tree yields 25

1 Preliminary notions: Alphabet, Languages, Gram-
mars

An algorithm is a way of giving instructions to a computer so that it can use those
instructions to performs a task. However, to do various tasks, one needs various
algorithms. Solvability of task thus can be defined whether there exists an algorithm
that a computer can follow and give an answer. There are tasks for which no algorithm
(and thus no program) can be written which could solve them. They are called
undecidable problems. However, while certain tasks can be solved, resources that it
requires a computer to solve them varies. For certain tasks, there exist algorithms
that are efficient enough to give an answer. We will call these algorithms affordable
ones.
We approximate, study natural languages with the help of formal ones. Why? Be-
cause (some) formal languages are found to be easier for a computer to understand
than natural languages. Thus, we need to study formal languages and their proper-
ties in order to identify what they are capable of — in what extent they can simulate
natural languages. In order to consider formal languages, to study their properties,
etc. we need to have some notions that would allow us to speak about them. Firstly,
we need an alphabet in formal languages to write words of a formal language.

Definition 1.1 An alphabet Σ is a finite nonempty set. The elements of this set,
i.e. of the alphabet Σ, are called symbols (of Σ).

We need to define words (called strings sometimes) of a formal language. In natural
languages, not any sequence of letters (phonemes) makes up a words and nor any
sequence of words can be used as a sentence. In formal languages, it’s simple: any
sequence of symbols of an alphabet is called a words.1

Definition 1.2 A string (word) is a finite sequence (possibly empty) of symbols of
an alphabet Σ.

For example, let Σ = {a, b, c, d}, then any sequence made up of the symbols a, b, c, d

is a word, e.g. daaaaabc, c, ab, bab, abba, etc.
1Below, we will use grammars (set of rules) in order to define those words that are generated

using a grammar.

Now, we can try to combine two words into a larger word, that is, to concatenate two
words.

Definition 1.3 Let ω1 and ω2 be two words over an alphabet Σ. Then ω1ω2 denotes
the concatenation of ω1 and ω2, i.e., ω1ω2 is the word over Σ obtained out of a copy
of ω1 followed by a copy of ω2.

We also treat as a word an empty sequence: the empty string (empty word), denoted
with ϵ, is the string with zero occurrences of symbols (of any alphabet). That is,
you can create ϵ from any alphabet: ϵ needs no symbols. It is easy to check that
ϵω = ωϵ = ω for any string ω. Indeed, ϵω consists of zero occurrences (that what ϵ

is by definition) of symbols followed by ω which is the same as ω, thus, ϵω = ω. In
same way, ωϵ = ω, and hence, ϵω = ωϵ = ω.
We can define what is a length of a word.

Definition 1.4 A number of occurrences of symbols in ω is called the length of ω;
we denote the length of ω with len(ω).

For instance, the length of a word aaab is 4. The length of a is 1. The length of cd
is 2. The length of the empty word ϵ is 0 (it has zero occurrence of symbols)! Note
that the length is the number of occurrences of a symbol not a number of symbols.
For instance, the length of aaa is 3 as it has 3 occurrences of the symbol a, but aaa is
composed using only one symbol (a). Nevertheless, we may sometimes say that aaa

has 3 symbols in it.
Convention: Lowercase letters of the Latin alphabet (a, b, c, . . .) denote symbols of
an alphabet; lowercase letters of the Greek alphabet denote words (ω, γ, δ, κ, α, β, . . .);
and capital letters of the Latin alphabet denote languages, unless otherwise stated.

Definition 1.5
If Σ is an alphabet, by Σk we denote the set of strings over Σ of length k. Thus,
the set of all strings over an alphabet Σ, denoted with Σ∗ (Kleene star of Σ), can be
defined as follows:

Σ∗ = Σ0 ∪Σ1 ∪Σ2 ∪ · · ·

We denote with Σ+ the set of non-empty strings of Σ∗, hence: Σ∗ = {ϵ} ∪Σ+.

Thus, Σ∗ denotes the set of all the words built over Σ (words of length 0, 1, 2, etc.);
Σ+ denotes the set of all words of positive length, i.e. every word that can be built
using Σ except the empty word ϵ.
A language is a set of strings over an alphabet Σ. More formally, it sounds as follows:

Definition 1.6

A(ny) subset L of Σ∗ is called a language over the alphabet Σ.

Hence, any set of any words built using Σ can be considered as a language. We want
languages not to be any subsets but more interesting ones. That is, we want them to
be generated according to some rules.

2 Phrase Structure Grammars
Phrase-structure grammars (PSGs) is a class of formal grammars defined by Chomsky.
PSGs were inspired by Bloomfield’s linguistic notion of constituents, which allow one
to analyze natural language expressions by determining their constituent structures.2

Let us provide definitions of a phrase-structure grammar (PSG), a phrase-structure
derivation, and a language defined by a phrase-structure grammar.

Definition 2.1 (Phrase-Structure Grammars Chomsky1956)
A phrase-structure grammar (PSG) is a quadruple G = ⟨N,Σ, P, S⟩, where

• N is a finite set of symbols called the non-terminal symbols;

• Σ is a set of symbols called the terminal symbols such that Σ ∩N = ∅;

• S ∈ N is a symbol called the start (initial, distinguished) symbol;

• P ⊆ (Σ ∪N)+ × (Σ ∪N)∗ is a finite set of production (rewrite) rules.

By convention, for p = ⟨γ, δ⟩ ∈ P , we write γ −→ δ.
2Because of this, PSGs are also known as constituency grammars.

(Remember the convention that we made above: Lower case symbols of the Latin
alphabet (a, b, . . .) denote symbols of Σ (terminal symbols). For non-terminals sym-
bols, i.e., elements of N , we use capital letter symbols (A,B, . . .). In order to denote
a string of terminals and non-terminal symbols, i.e., a string over Σ ∪ N , we use a
lower case symbol of the Greek alphabet.)

Explanation for Definition 2.1

Terminals Vs Non-terminals
Think of non-terminals (i.e. the set N), as categories such as S, VP, NP, PP, etc. We
want to separate them from words, like Mary, eats, the, etc. That is why, we say that
Σ ∩N = ∅, i.e. the alphabet from which we construct words Mary, eats, the, etc. has
no element that could be a non-terminal; and vice-versa: a word like Mary cannot be
a non-terminal (we want words such as Mary to be treated differently from categories
such as VP).

The initial symbol S
Why we need the initial symbol? It’s rather conventional to have one initial symbols
– you could have several (nothing changes in fact). Intuitively, we want to somehow
agree where a derivation starts from. We say that it starts at the initial symbol (that
is why it is called the initial, start symbol). Its use will become more highlighted
below.

Production rules
The definition says that set of production rules P is a subset of (Σ∪N)+× (Σ∪N)∗,
that is,3 P is a set of pairs (γ, δ) where δ is a word from the alphabet (Σ ∪N) (that
is what (Σ ∪ N)∗ means) – the alphabet obtained by merging two alphabets Σ and
N ; and γ is also a word from the same alphabet (Σ ∪N) and we also require that γ

should not be the empty word ϵ (that is what (Σ ∪N)+ means). Usually, instead of
3See Appendix B for relations.

writing a production rule as a pair (γ, δ), we write it as follows: γ −→ δ. It can be
read as follows: we can rewrite (substitute) γ as δ; we can produce δ out of γ.
For instance, let the set of terminals be Σ = {a, b, c} and the set of nonterminals
be N = {S,X}. We may define production rules such as the following ones: a −→
SbcaXa, XSc −→ abcXS, cXab −→ ϵ, etc.
The only restriction we have (according to Definition 2.1) is that we cannot have a
rule of the following kind ϵ −→ Why? Because it would mean that from nothing,
i.e., ϵ, we can produce something, which we do not want, as it really makes no big
sense afterwards to talk about rules and grammars, it would be more like a magic:
from nothing you create something.

Definition 2.2 (One-step Derivation) Given a PSG G = ⟨N,Σ, P, S⟩, the one-
step derivation =⇒G is a binary relation over (Σ ∪N)∗ and it is defined as follows:
α =⇒G β holds if and only if there are δ1 ∈ (Σ ∪ N)∗, δ2 ∈ (Σ ∪ N)∗, and p ∈ P ,
where p = (µ1 → µ2), such that

α = δ1µ1δ2 and β = δ1µ2δ2

Definition 2.3 (Derivation and Generated Language) Given a PSG G = ⟨N,Σ, P, S⟩,
the derivation relation =⇒∗

G is the reflexive and transitive closure of =⇒G.
The language generated by G is a set L defined as follows:

L = {α ∈ Σ∗ | S =⇒∗
G α}

Explanation for One-step Derivation and Derivation

One-step Derivation
Let us consider a production rule p, written as µ1 −→ µ2. First, look at what this rule
says. It says: µ1 can be substituted with µ2. What kind of situations this production
rule can be applied to? Informally speaking, this rule can be applied wherever you
find µ1 there. That is, if we find some string (word) ω whose part is µ1 then you can
substitute that very part of ω by µ2. So, how µ1 can be a part of ω?! We can write
this as follows: ω = δ1µ1δ2 (indeed this is a short and simple representation of the

fact that µ1 is substring of ω).4 Now, we can substitute µ1 by µ2 within ω: the only
thing that will be changed in ω is µ1, the rest should remain the same (i.e. δ1 and
δ2 should be maintained in their respective places, i.e. in the start and in the end).
Thus, by substituting µ1 with µ2 in ω, we obtain a new word, call it ω

′ , which is:
ω

′
= δ1µ2δ2.

For instance, let us have a rule p = aSc −→ bSbXcXabc, and a some word ω =

SXaScXbab. Can we apply p to ω? Yes, because ω has aSc as its substring. Indeed,
ω = SX aSc︸︷︷︸

here it is
Xbab. After substituting aSc with bSbXcX in ω, we obtain a new

word ω
′ , which is as follows ω

′
= SXbSbXcXabcXbab (in bold is shown bSbXcXabc,

which was inserted instead of aSc).
As one can see, one-step derivation is a relation. Indeed, a word ω and ω

′ are in
one-step derivation relation, denoted by =⇒G if and only if we can obtain ω

′ from ω

by applying a production rule of the grammar G.
For instance, the words ω = SXaScXbab and ω

′
= SXbSbXcXabcXbab are in the relation

=⇒G as we obtained ω
′ by applying the rule p = aSc −→ bSbXcXabc.

Another example: let p = aXb −→ c. Consider a word ω = SSSaXbSaXbddd. Thanks
to p, in ω we can substitute the word aXb with c. However, there are two occurrences
of aXb in ω (one is underlined and one is in bold: ω = SSSaXbSaXbddd). We can
substitute either of them, but not both at the same time!!! That is, at one-step
derivation, we can choose one of the occurrences of aXb in ω and substitute that one
with c. For instance, let us choose the one that is underlined: ω = SSSaXbSaXbddd.
In result we obtain ω

′
= SSScSaXbddd. If we have substituted the other occurrence

(in bold ω = SSSaXbSaXbddd), then we would have obtained ω
′
1 = SSSaXbScddd.

Derivation
Once we have defined the notion of one-step derivation, we are ready to talk about
the notion of derivation. Imagine we derived ω

′ from ω (of course, by applying some
rule) in one-step. Then, we derived ω

′′ out of ω
′ . Now, we want to say that ω

′′

was derived from ω (by applying several rules of grammar). To achieve that we just
4If ω starts with µ1 then δ1 is the empty word (ϵ); if ω ends with µ1 then δ2 is the empty word

(ϵ); otherwise ω = δ1µ1δ2 where δ1 and δ2 are nonempty words.

make use of the transitive closure of =⇒G, denoted by =⇒∗
G (see for transitive closure

Appendix B.1). Thus, we can write ω =⇒∗
G ω

′′ .
For the sake of illustration, let us consider an example. Let the production rules
of our grammar G include two rules p1 = SSS −→ Xb and p2 = X −→ cd. Take
ω = dSSSa. By applying p1 to ω we obtain ω

′
= dXba. We can apply p2 to ω

′ , which
is to substitute the occurrence of X in ω

′ (there is only one occurrence of X in ω
′) by

cd. So, we obtain ω
′′
= dcdba. Hence, we can say that from ω one can derive dcdba

by applying the grammar rules. We write such a fact as follows: ω =⇒∗
G dcdba.

The language generated by the grammar G

When defining the language generated by the grammar, we are interested in those
words which would be derived from starting from the distinguished (initial, start)
symbol S. Moreover, we are interested in those derived words that are built up using
terminal symbols (like in natural languages, we do not want in the spoken or written
form to have [NP john], [VP runs], [Det every], etc. but John, eats, apple, etc.) For
example, if we start from S and derive aXd, we cannot include aXd in the language
because it contains a non-terminal (X). If we start from S and derive for abda, since
abda has no occurrences of non-terminal symbols, we can include it in the language.
For more clarity, consider a grammar G with nonterminals N = {S,X} and terminals
Σ = {a, b, z}. Let its rules be S −→ XabS, S −→ z and Xa −→ ϵ.
Then, we starting with S, one can derive a string of terminals S =⇒G XabS =⇒G

bS =⇒G bz. Hence, bz is in the language generated by G. We can derive other strings
like that. For instance:
S =⇒G XabS =⇒G XabXabS =⇒G bXabS =⇒G bbS =⇒G bbz

S =⇒G XabS =⇒G XabXabS =⇒G bXabS =⇒G bbS =⇒G bbXabS =⇒G bbbS =⇒G bbbz

Thus we generate in this way a language L = {bz, bbz, bbbz, . . .}

3 The Chomsky Hierarchy of Grammars
By constraining rewriting rules of a PSG, one can define various classes of PSGs.
Chomsky determines three proper sub-classes of PSGs, provided within Definition 3.1.

Definition 3.1 (Four Types of Grammars)

Type-0 A PSG G = ⟨N,Σ, P, S⟩ is called type-0, or unrestricted, if each of its
production rules p ∈ P has the form α → β, where α ∈ (Σ ∪ N)+ and β ∈
(Σ ∪N)∗, or equivalently, if production rules of G are unrestricted, then G is a
type-0 grammar.

Type-1 A PSG G = ⟨N,Σ, P, S⟩ is called type-1, or context-sensitive, if each of its
production rules p ∈ P is either of the form S → ϵ, or αAβ → αµβ, where
α, β ∈ (Σ ∪N)∗; µ ∈ (Σ ∪N)+; and A ∈ N .

Type-2 A PSG G = ⟨N,Σ, P, S⟩ is called type-2, or context-free, if each of its
production rules p ∈ P has the form A → ω, where A ∈ N and ω ∈ (Σ ∪N)∗

Type-3 A PSG G = ⟨V,Σ, P, S⟩ is called type-3, or regular, if each of its production
rules p ∈ P is either of the following forms A → ϵ, A → a, or A → aB, where
A,B ∈ N , and a ∈ Σ.

An immediate consequence of Definition 3.1 are the following inclusions:

{Type-0 Grammars} ⊃ {Type-1 Grammars} ⊃ {Type-2 Grammars} ⊃ {Type-3 Grammars}
(1)

The inclusions in (1) are known as the Chomsky hierarchy. Type-0 grammars gen-
erate exactly recursively enumerable languages (the languages that Turing machines
accept). Thus, one only knows that if a string ω belongs to a language LG gener-
ated/accepted by a type-0 grammar G, then there is a Turing machine M that halts
in a final state. If ω /∈ LG, then M halts in a non-final state or does not halt at all,
i.e., loops forever. Thus, the question whether a ω ∈ LG holds is undecidable. That
is why one does not make use of type-0 grammars in practical applications.
The next class in the Chomsky hierarchy is Type-1, also known as the class of context-
sensitive grammars. While there are algorithms that can tell us whether a grammar
can generate a certain word, those algorithms are not affordable ones.
Importantly, for context-free grammars, there are affordable algorithms. That is why,
we focus on context-free grammars onwards.

Chomsky’s Hierarchy

Type-3

Type-2

Type-1

Type-0

Languages

Regular

Context Free

Context Sensitive

Recursively Enumerable

Figure 1: An illustration of Chomsky’s hierarchy of languages

4 Context-Free Grammars

4.1 Introduction
Context-Free Grammars (CFGs) proved to be very useful in studying both program-
ming and natural languages. While CFGs are not as expressive as context-sensitive
grammars, CFGs are computationally affordable to use whereas context-sensitive
grammars can be very impractical (computationally expensive). More precisely, for
CFGs, there are computationally affordable algorithms that can give an answer to a
question “Can a given word ω be derived (generated) by a given context-free grammar
G?” and if yes, then these algorithms will show you how the given word ω is derived
using the given grammar G. This problem is called parsing. CFGs are useful because
(a) they are expressive enough to express a number of phenomena and at the same
time (b) their parsing problem is a computationally affordable one.

4.2 Definition and examples of CFGs
We already defined what is a context-free grammar: it is a PSG such that each of its
production rules p ∈ P has the form A → ω, where A ∈ N (i.e. it is a nonterminal
symbol) and ω ∈ (Σ ∪ N)∗ (i.e. its a word with occurrences of non-terminal and
terminal symbols).

For example:
p0 : X −→ ‘thebeatles′

p1 : S −→ ϵ

p2 : S −→ aSa

p3 : S −→ bS

(2)

Non-terminals : X, S

Initial symbol : S

Terminals : thebeatles, a, b

(3)

Let us make sure that (2) is a context-free grammar, i.e., every production rule has
a form A → ω. We have only four rules: p0, p1, p2, and p3. Each of them has indeed
the form A → ω (in the case of p0, A is X, in the rest of the rules A is S).

X =⇒ ‘thebeatles′ (4)

‘thebeatles′ is a word (it is a single terminal symbol) that one can generate using the
derivation (4). However, it’s not a word of the language that grammar the generates
– it should start from the initial symbol, which is S!
Let us produce words starting from S:

S =⇒p2 aSa =⇒p3 abSa =⇒p1 aba (5)

Thus, aba is a word that this grammar generates with the derivation (5).

S =⇒p2 aSa =⇒p3 abSa =⇒p2 abbSa =⇒p2 abba (6)

Usually, we omit subscripts in (=⇒p2) but we did not do that in so for the sake of
illustration.

S =⇒ aSa =⇒ abSa =⇒ abbSa =⇒ abbbSa =⇒ abbba (7)

We can also derive ϵ just by applying the rule p1.
Thus, the language generated by our grammar consists of words {ϵ, aba, abba, abbba, . . .}.

4.3 Derivation Trees
We saw how one derives words of a context-free language by applying production rules.
Thanks to relatively simple structure of CFG production rules, namely the fact that
each of them has a form A −→ ω, we can somehow structure these derivations. More
precisely, it is possible to view a derivation of a word as a tree.
For that, one defines a set of derivation trees associated with G.

Definition 4.1 (CFG Derivation Tree)
For a CFG grammar G = ⟨V,Σ, P, S⟩, we define a derivation tree as follows:

1. Every node of a derivation tree has a label (either a terminal or a non-terminal
symbol).

2. Any interior node is labeled with a non-terminal symbol.

3. Each frontier node is labeled by either a non-terminal or a terminal symbol, or
ϵ. If ϵ labels a frontier node, then it must be the only child of its mother.

4. If nodes labelled with A1, . . . , Am are (mutually distinct) daughters of a node
labelled with A (the children are listed in the left to right order), then A →
A1 . . . Am is a production rule of G.

Explanation for Definition 4.1
1. Nodes of a tree are labelled with terminals or non-terminals (which is the case
usually for syntactic trees).
2. Interior nodes (i.e. the ones that are not on the frontier of the tree) are labeled
with non-terminals (like it is in syntactic trees).
3. Each frontier node is labeled by either a non-terminal or a terminal symbol – this
is bit different, now, an frontier node can be a non-terminal as well (e.g. VP). Think
of this as of incomplete syntax tree: you have a category but you do not have yet a
word that is going to appear below it.
4. If a node with label A is the mother of nodes with labels A1, . . . , Am, then A →
A1 . . . Am is a production. That is, our tree represents the production rules of the

grammar and nothing else. In other words, if you find some mother with children,
then this mother can be rewritten as its children.

The grammar (2):
p0 : X −→ ‘thebeatles′

p1 : S −→ ϵ

p2 : S −→ aSa

p3 : S −→ bS

(5):
S =⇒p2 aSa =⇒p3 abSa =⇒p1 aba

(6):
S =⇒p2 aSa =⇒p3 abSa =⇒p2 abbSa =⇒p2 abba

Let’s consider examples for more clarity. Let us consider again the grammar (2) and
the derivation of aba shown in (5) (repeated here within a box). Let us check whether
the tree in Figure 2(a) encodes this derivation. Let’s check that if this tree respects
conditions 1-4. Indeed, 1-3 are respected. So, let us check 4. The root node with label
S. Its children are a, S, and a. Thus, we should check whether the rule S −→ aSa is
in the grammar (2). This is the case. Now it remains to check another node S which
has a child, i.e. the second node S. It has only child b. We have to check whether
S −→ b is the rule of the grammar (2). It is not! Thus, the tree in Figure 2(a) is not
a derivation tree of aba!

S

a S

b

a

(a) A tree

S

a S

b S

b S

ϵ

a

(b) A tree for
abba

Figure 2: Trees representing derivations of words

Now, let us check whether the tree in Figure 2 is a derivation tree of the word abba,
whose derivation we have see in (6). The requirements 1-3 are respected. It remains

to check 4. The root respects the requirement: it has label S and it’s children are
labeled with a, S and a; and the grammar has the rule S −→ aSa. We walk down in
the tree and check mother nodes. There three mother nodes in this tree that remain
to be checked, coloured in blue, red, and grey. In the case of the blue coloured one
S, it has two daughters b and S. Now we have to check whether S −→ bS is a rule
in our grammar. It is. Thus we go further and check the node with red label S. The
same here as in the case of the blue coloured one. So, go further down and check the
grey coloured node it has only one child, which is ϵ (thus 3. is respected). Check
whether we have a rule of the form S −→ ϵ, which is indeed the case. Thus, the tree
in Figure 2 is indeed a derivation tree and it yields a word abϵba, which is abba.
Let us now build a derivation tree of aba. As we saw already, the tree in Figure 2(a)
is not a good one for that. Let’s have a look again at the derivation of aba:

S =⇒ aSa =⇒ abSa =⇒ aba (5)

The first step in this derivation is: S =⇒ aSa. Can we express this as a tree? Yes.
How? Build a tree with the root S and its children be aSa. This tree is shown in
Figure 3(a). This is a derivation tree (check if you want it respects all the requirements
of Definition 4.1).
Then, we again look at the derivation (5): S is substituted by bS. Can we express
this? Yes! We build from the tree in Figure 3(a) a new one by substituting S (drawn
in brown) by a tree representing the rule p3 : S =⇒ bS. The rule p3 can be represented

as:
S

b S

. Thus, we obtain a new tree shown in Figure 3(c).

The last step in the derivation (5) is done using the rule p1 = S =⇒ ϵ. Thus, we can
substitute the node S in the tree in Figure 3(c) with the tree representing the rule p1,

which is
S

ϵ

. Thus, we obtain the tree shown in

In the similar way, we can turn any derivation of a word into a tree! Such trees are
called derivation trees.

S

a S a
(a) A tree

S

a S

b S

a

(b) A tree

S

a S

b S

ϵ

a

(c) The
derivation
tree of aba

Figure 3: Building trees step by step

5 Parsing
Given a grammar G and a string α is there is a way to find out that G generates α?
If yes, then can we show how G generates α?

Practical Session

6 Abstract Categorial Grammars
The following preliminary notions to needed to define Abstract Categorial Grammars
(ACGs) by de Groote (2004).

• A higher-order linear signature (HOS) is a triple Σ = ⟨A,C, τ⟩ where:

– A is a finite set of atomic types;

– C is a finite set of constants;

– τ : C −→ T (A) is type assignment function mapping each constant from
C to a linear implicative type built upon A.

• The order of a type ξ, denoted as ord(ξ) is defined as:

ord(ξ) =

{
1 if ξ is atomic.
max(1 + ord(α), ord(β)) if ξ = α → β

• Linear λ-terms Λl(Σ)over a HOS Σ = ⟨A,C, τ⟩ is the set containing all and
only elements defined as follows:

– If t1, t2 ∈ Λl(Σ) the (t1t2) ∈ Λl(Σ).

– If t ∈ Λl(Σ), then λx.t ∈ Λl(Σ), where x is a variable.

– For any subterm λx.p of a term t ∈ Λl(Σ), x is free in p.

– for any subterm t1t2 of t ∈ Λl(Σ), t1 and t2 have no common free variables.

Linear λ-terms allow us to encode a number of structures, including trees and strings.
For the sake of example let us see how strings can be modelled as linear λ-terms. Given
a finite alphabet ∆, we build a HOS, denoted as Σ

string
∆ so that:

• Constants of Σstring
∆ model symbols in ∆.

• We have a single atomic type o in Σ
string
∆ .

• Every constant in Σ
string
∆ is of type o → o.

We call Σstring
∆ a string HOS. One encodes a sting over ∆ with a λ-term in Λ(Σ∆)

of type o → o as follows:

a1a2 . . . an ∈ ∆∗ is represented by a term λ zo. ao→o
1 (ao→o

2 (· · · (ao→o
n zo) · · ·)) : o → o.

The empty string is a combinator λzo.zo : o → o, i.e. the identity function. We
encode the string concatenation with a combinator λuo→o

1 uo→o
2 . λ zo. uo→o

1 (uo→o
2 zo).

Indeed, if t1 is a λ-term encoding a string θ1 and t2 is a λ-term encoding θ2, then
λzo. to→o

1 (to→o
2 zo) encodes the concatenation of the original strings θ1θ2 (indeed by

applying the combinator λxo→o
1 .λxo→o

2 . λ zo. xo→o
1 (xo→o

2 zo) to t1 and then to t2, we
obtain the term that beta reduces to λzo. to→o

1 (to→o
2 zo)). Below, we will omit types

over variables in λ-terms.

Definition 1 An ACG is a quadruple G = (ΣA,ΣO,L, S) where:

• Σa = ⟨Aa, Ca, τa⟩ is a higher order signature, called the abstract signature;

• Σo = ⟨Ao, Co, τo⟩ is a higher order signature, called the object signature;

• L is a mapping from Ca to Λl(ΣO), called the lexicon of the grammar G, which is
uniquely lifted to a homomorphism (denoted again with L) that has the following
properties:

– L(x) = x where x is a variable;

– L(t1t2) = L(t1)L(t2);

– L(λx.t) = λx.L(t).

• S is a type of ΣA, called the distinguished type of G.

With G = (ΣA,ΣO,L, S), we associate two languages, defined as follows:
The abstract language: A(G) = {t ∈ Λ(Σa) | ⊢Σo t : s is derivable}
The object language: O(G) = {u ∈ Λ(Σo) | ∃t ∈ A(G) : u = L(t)}

For example, let us show how to encode the following context-free grammar as ACGs.

p1 : S −→ ϵ

p2 : S −→ aSbS

In the abstract signature, Σa, we introduce two constants Cp1 and Cp2 associated
with the rules p1 and p2 respectively. We have a single atomic type S in the abstract
signature, which we also use the distinguished type of the grammar (the start symbol).
We type Cp1 with S, whereas we type Cp2 with S → S → S. The typing of Cp1

encodes the fact that p1 does not involve any non-terminal but S, that is, we cannot
further expand the string using p1, but substitute that occurrence with ϵ. The type
of Cp2 shows that in a derivation of a string, by applying the rule p2, we obtain a
string (mixture of terminals and non-terminals) with two occurrence of S. From a
functional view, it means that it will be a function that can accept two arguments of
type S. Now, we can model the derivations of the original context free grammar as
terms over Σa. For example, let us consider the following derivation:

S =⇒G aSbS︸ ︷︷ ︸
p2

=⇒G aϵbS︸ ︷︷ ︸
p1

=⇒G aϵbϵ︸ ︷︷ ︸
p1

We can model it by the following term t =
(
Cp2 Cp1

)
Cp1 : S. Its type S shows that

it is a completed derivation, i.e., there cannot be done any further expansion on it.
We still have not seen how to model string language generated by the grammar. For
that we show the interpretations of the constants (i.e. build the lexicon L) as strings,
that is, we map them to the terms over a string HOS.
L(Cp1) = λx.x : o → o

L(Cp2) = λu.λv. λz. a(u (b (v z))) : (o → o) → (o → o) → o → o
So, the derivation term t is mapped by the lexicon L as follows:

L(t) = (LCp2(LCp1))(LCp1) =
(
λu.λv. λz. a(u (b (v z))) (λx.x)

)
(λx.x) ↠β λz.a (b z)

In the similar vain, we can mimic every derivation of the CFG by the corresponding
term over abstract signature. The string obtain by that derivation would be the
image of that term under the lexicon. In this way, we obtain the object language of
the constructed ACG coinciding with the language generated by the CFG.
We say the that ACG is of order n if the maximum order of types of constants in
its abstract signature is n, and denote by ord(Σa). This means that, for instance in
second order ACGs, each constants of the abstract signature is either of an atomic
type, or is of type ξ1 → . . . → ξk where ξi is atomic for i ∈ {1 · · · k}. The ACG we
have constructed above is a second-order one.

We say that a lexicon L has the order n, and denote by ord(L), if n is the maximum
of the orders of types of images of the abstract constants. The lexicon we constructed
above is of order 3 (the order of the type of the interpretation of the constant Cp2 is
3).
It should be underlined that parsing is of polynomial complexity for the second-order
ACGs.

Appendix

B Relations
A relation R is a set of pairs {(a, b)}, where a and b can be anything, i.e. elements of
any sets. We say that R(a, b) holds whenever (a, b) belongs to R (i.e. (a, b) ∈ R). We
may say that R is a binary relation. We may write this as well as aRb (called infix
notation).
For instance, let us take in the role of a countries in Scandinavia, and let b be
their capitals. Then the relation, let us call CapitalOf is the set consisting of pairs
(Sweden, Stockholm), (Norway,Oslo), and (Denmark, Copenhagen).
Another example, let us take as a relation, natural numbers and their successors, call it
the successor relation. That is, we have successor = {(0, 1), (1, 2), (2, 3), (3, 4), . . . , (k, k+
1), . . . }. We may write successor(1, 2) or 1successor2.
Yet another example, let us take as a relation, sportsmen and their countries of origin,
call it FOrgin, we have:

FOrgin ={(Sharapova,Russia), (Larrson, Sweden), (Ibrahimovic, Sweden), (Zidane, France),

(Christiano, Portugal), (Messi, Argentina), (Pele, Brazil), (Mardona,Argentina),

(Jordan, US), (Kipiani,Georgia), (Liparteliani,Georgia), . . . }

Yet another example can be natural numbers again, but now the members of this re-
lation can be any pair (a, b) if a < b, e.g. (0, 1), (0, 2), . . . , (100, 4981), (100, 4982),
Let us call this relation <. While there are a lot (infinite number) of pairs in the
relation <, there won’t be, for example, (5, 4) because 5 ≮ 4. Neither there will be,
for instance, (1, 1) as 1 ≮ 1.
In general, given two sets A and B, we can create a new set, called the (Cartesian)
product of A and B and denoted by A× B as the set of all pairs (a, b) where a ∈ A

and b ∈ B.

For instance, let A = {0, 1, 2} and B = {A,B,C,D}. We have:

A×B ={(0, A), (0, B), (0, C), (0, D),

(1, A), (1, B), (1, C), (1, D),

(2, A), (2, B), (2, C), (2, C)}

A relation R defined between elements of A and B is a subset of A×B.

B.1 Transitive Closure
We know from arithmetics that if we have a < b and b < c then a < c. Such relations
are called transitive. That is, if we know that if we have R(a, b) and R(b, c), we have
R(a, c), then R is called transitive.
Consider again the relation successor: a successor b iff a + 1 = b. Note that that
if a successor b and b successor c then it is not the case that a successor c (in fact
c = a + 2 and not c = a + 1). So, successor is not transitive. But, we can make
out of it a transitive one. Namely, we do as follows: if we have successor(a, b) and
successor(b, c), we extend to the successor relation with a new pair (a, c). We obtain
a new relation, call it successor

′ . Now, in successor
′ we have all the old pairs from

successor and new pairs. Again, if we find that successor
′
(a, b) and successor

′
(b, c)

holds but we have no successor
′
(a, c), we do the same: extend successor

′ with a new
pair (a, c). And we continue like that until we obtain that whenever we have that
(a, b) and (b, c) belong to the relation, we also have that (a, c) also belongs to the
relation . This procedure is called transitive closure.
Now, let us draw a possible picture of a relation: if aRb holds then we draw a and
b as nodes and draw a directed arrow (edge) from a to b. So, let we have a relation
R1 = {(a, b), (b, c), (c, d), (a, e)}. We can illustrate this as it is shown in Figure A.
Note that R1 = {(a, b), (b, c), (c, d), (a, e)} is not transitive. Indeed, we have in R1

the pairs (a, b) and (b, c) but we don’t have (a, c). That is, we can go from a to b and
from b to c but we cannot go from a to c (see Figure A). Transitivity means indeed
that: if we can go from a to b and from b to c then we should be able to go from a to
c. Thus, to make R1 transitive, we should add a link (edge) from from a to c. The
same is true for (b, c) and (c, d), and therefore, we add (b, d) pair to R1. We have one
more link between a and e. But since e is not linked to anything, we do not need to
bother in that case to find out where we can go from a through e as e leads nowhere.

a

b

c

d

e

Figure A: A graphical representation of the R1 relation

Thus, obtain the transitive closure of R1, denoted as R∗
1. It is illustrated on Figure B,

where dashed edges illustrate the ones that we have added as a result of transitive
closure.

a

b

c

d

e

Figure B: A graphical representation of the R1 relation

Now, let us take again our relation <. It is transitive: a < b and b < c then a < c.
However, we know that (1, 1), (2, 2), etc. doesn’t belong to <. But, we can add them
to the <. Then, we obtain a new relation, namely ≤. Indeed, a ≤ b if and only if
a = b or a < b. This is called reflexive closure.
Relations, such as successor, are neither transitive nor reflexive.

B.2 n-ary relations
We can also image ternary (3-ary) relations. For example, let us consider sportsmen.
We create a new relation: a sportsman, his/her country of origin, and height. So, we
form a new relation, call it SCH, as follows:

SCH ={(Sharapova,Russia, 185cm), (Larrson, Sweden, 175cm),

(Ibrahimovic, Sweden, 195cm), . . . , (Jordan, US, 198cm), . . .

However note that we could build SCH from FOrgin: take a pair in the relation
FOrgin, e.g. (Larrson, Sweden), and pair it with 175cm; we obtain, ((Larrson, Sweden), 175cm)

which we can identify easily with (Larrson, Sweden, 175cm). This is a generic way
of thinking n − ary relations: they are like binary relations, but instead of relating
two things, they relate n things.

C How to obtain a yield of a tree – what a tree
yields

TP

NP

Mary

VP

V

sent

NP

Bill

NP

D

a

NP

present

Figure C: A tree

Formally, a tree consists of hierarchically ordered entities that have some additional
properties. Informally, a tree consists of nodes. Every node has one and only one
mother except a node that has no mother - it is the root node. Starting from the root
node, one can reach any node of the tree. Terminal (frontier) nodes are ones that
have no offsprings. So, one we arrive in a terminal node - that is the end of the way.
So, imagine, we plan to reach terminal nodes. Which one first? The leftmost one.
Once we reach it, we start a new journey from the root node. We reach the leftmost
one from those that remain. And so on until we reach all the frontier nodes. Then
we concatenate all these terminal nodes, from first reached one to the last one.
Take an example of a tree shown in Figure C. The root is TP. Starting from it we
can reach terminal nodes. First one is Mary – since we go first for the leftmost one.
To do that, we take always the leftmost branch (whenever there are two or more to
choose from). We start at TP. Here are two branches, DP and VP. Since DP is the
leftmost one, we go there. From there, we can only go to Mary. In this way, we then
go to sent, Bill, a, present. Thus, the yeild of this tree is Mary sent Bill a present
(we put spaces for the sake of clarity, otherwise, it is MarysentBillapresent, which is
less readable).

