
First Tbilisi International Summer School in
Logic, Language, Artificial Intelligence

Language Modeling Techniques for
Continuous Speech Recognition

Bagher BabaAli
University of Tehran

Introduction to speech recognition

• Converting Speech to Text

Speech
Recognition

Words

“How are you?”
Speech Signal

Basic concepts of speech recognition

• Structure of speech
• Recognition process
• Main components of ASR
• Other used concepts
• Evaluation Criteria

Structure of speech

• Speech is a complex phenomenon.
• A dynamic process without clearly distinguished

parts
• All modern descriptions of it are probabilistic
• Speech is a continuous audio stream with

dynamically changed states.

• Phone => Subword => Word => Utterance

The Noisy Channel Model

message

noisy channel

message

Message Channel+ =Signal
Decoding model: find Message*= argmax P(Message|Signal)
But how do we represent each of these things?

The Noisy Channel Model:
Assumptions

• What is the most likely sentence out of all
sentences in the language L, given some
acoustic input O?

• Treat acoustic input O as sequence of
individual acoustic observations
– O = o1,o2,o3,…,ot

• Define a sentence W as a sequence of words:
– W = w1,w2,w3,…,wn

The Noisy Channel Model:

• Probabilistic implication: Pick the highest probable
sequence:

• We can use Bayes rule to rewrite this:

• Since denominator is the same for each candidate
sentence W, we can ignore it for the argmax:

ˆ W argmax
W L

P(W | O)

ˆ W argmax
W L

P(O |W)P(W)

ˆ W argmax
W L

P(O |W)P(W)
P(O)

Math. formula representation of ASR

ASR , Statistical Approach

9

)()|(maxargˆ WPWOP
W

W
Fred Jelinek

S1 S2 S3

a11

a12

a22

a23

a33),|(21 ttt wwwP
Acoustic HMMs Word Tri-grams

Jim Baker

• Based on work on Hidden Markov Models
done by Leonard Baum at IDA, Princeton
in the late 1960s

• Purely statistical approach pursued by
Fred Jelinek and Jim Baker, IBM
T.J.Watson Research

Recognition process

Parts of an ASR System

Feature
Calculation

Language
Modeling

Acoustic
Modeling

k @

Pronunciation
Modeling

cat: k@t
dog: dog
mail: mAl
the: D&, DE
…

cat dog: 0.00002
cat the: 0.0000005
the cat: 0.029
the dog: 0.031
the mail: 0.054
…

Produces
acoustics (xt)

Maps acoustics
to phones

Maps phones
to words

Strings words
together

Components of an ASR System

• Corpora for training and testing of components
• Feature extraction component
• Pronunciation Model (Lexicon)
• Acoustic Model
• Language Model
• Algorithms to search hypothesis space

efficiently (Decoder)

Acoustic model

• Connection between the acoustic information
and phonetics

• Three approaches:
– HMM-GMM
– HMM-DNN
– Pure DNN (End-to-end approach)

Acoustic model

• HMM-GMM

Acoustic model

• HMM-DNN

End-to-End ASR System

• End-to-End (DNN),
• HMM is eliminated
• recognized word sequence directly from

acoustic characteristic inputs
• Two common approaches:

– Connectionist Temporal Classification (CTC)
– Attention-based Encoder-Decoder

Phonetic dictionary

• Mapping from words to phones
• It might look like this:

– hello H EH L OW
– world W ER L D

• Alternative pronunciations.
– the TH IH
– the(2) TH AH

Language model

• A language model is used to restrict word
search.

• The most common language model is n-gram
language model

• Text database (Corpus)

recognize speech
or

wreck a nice beach

If P(recognize speech)
>P(wreck a nice beach)

Output =
“recognize speech”

Language model Impact (Lee,1988)

• Resource Management domain
• Speaker-independent, continuous-speech
• 997 word vocabulary
• Word-pair perplexity ∼ 60, Bigram ∼ 20

Language model Applications

• Speech Recognition
• Machine Translation
• Optical Character Recognition (OCR) and

Handwriting Recognition
• Language, Genre, Dialect and Authorship

Identification
• Information Retrieval/ Search Engine
• Spell & Grammar Checker
• Predictive Keyboard

Other used concepts

• Lattice
• N-best lists
• Speech database
• Text databases
• Criteria for evaluation

Lattice & N-best lists

Speech & Text databases

• Speech databases :
– Amount of data, Type (Telephone or Microphone),

number of speakers, quality
– Used to train acoustic model
– TIMIT, RM, WSJ, Switchboard, LibriSpeech

• Text databases :
– Amount of data, Type (Monolingual or Multilingual)
– Used to train language model
– Brown Corpus, British National Corpus, Google Books

N-gram Corpus, American National Corpus

Criteria for evaluation

• Word Error Rate (WER):
– WER = (I + D + S) / N

• S : number of substitutions
• D : number of deletions
• I : number of insertion
• N : number of words in the reference

• Accuracy:
• ACC = 1- (I + D + S) / N = 1 - WER

• Go from Boston to Washington on December 29 vs.
Go to Boston from Washington on December 29

• 2subst/8words * 100 = 25% WER or 75% Word
Accuracy

Current Word Error Rates

Task Vocabulary Error
(%)

Digits 11 0.5
WSJ read speech 5K 3
WSJ read speech 20K 3
Broadcast news 64,000+ 10
Conversational Telephone 64,000+ 20

language model

• Count-based LMs
– Statistical based LMs, e.g. N-gram
– Grammar based LMs, e.g. CFG

• Continuous-space language models
– Neural based LMs

Grammar based LMs

• Grammar is not flexible
• Complicated to build
• Hard to modify to accommodate new data:

– Add capability to make a reservation
– Add capability to ask for help
– Add ability to understand greetings
– …

• Parsing input with large grammar is slow for real-
time applications

• So…for large applications , n-gram models

Statistical language model

• Goal: compute the probability of a sentence
or sequence of words:

• How to compute this joint probability:
– Chain Rule of probability :

N-gram language model

• Markov Assumption

• In other words, we approximate each component in
the product as follows :

N-gram language model

• Simplest case : unigram model

• Using ML estimation, probabilities are based
on word counts:

N-gram language model

• Bigram model
• Condition on the previous word:

N-gram language model

• Bigram model example

N-gram language model

• One more bigram model example
• Berkeley Restaurant Project sentences

N-gram language model

• Raw bigram counts:

N-gram language model

• Raw bigram probabilities:

N-gram language model

• Bigram estimates of sentence probabilities:

N-gram language model

• What kinds of knowledge?

N-gram language model

• Trigram and other n-gram LMs use a longer
contiguous history:

Building a language model

• Data collection
• Text cleanup
• Train/test separation
• Initial model estimation

• Language model interpolation with generic model
• Language model pruning

Language Model Evaluation

• What is a good LM?
• How to estimate how good is a LM?
• Two approaches:

– Extrinsic Evaluation, e.g. WER
– Intrinsic Evaluation, e.g. Perplexity

• Data split
– Training
– Development
– Test

Perplexity
• Higher Probability = Lower Perplexity = Better

Prediction

• Chain rule:

• For Bigram:

Perplexity as branching factor
• Perplexity: as the weighted average branching factor of

a language.
• Example: Let’s suppose a sentence consisting of

random digits
• What is the perplexity of this sentence according to a

model that assign P=1/10 to each digit?

Perplexity
• Models trained on 38 million words from the Wall

Street Journal (WSJ) using a 19,979 word vocabulary.
• Evaluate on a disjoint set of 1.5 million WSJ words.

Ngram Properties
• Using of N-gram is popular because :

– Easy to implement, estimate
– Fast run-time computation (table lookup)
– Can be compiled into finite-state networks and

used efficient in speech recognition search
(composition with pronunciation and phone
models)

Ngram Properties

• As the value of N is increased, the accuracy of the
model increases.

• Considers limited size of context.
• Only works well if the test corpus looks like the

training corpus (Overfitting).
• Training matrix is sparse, even for very large corpora.

• How to Estimate the likelihood of unseen n-grams

Advanced Techniques

• N-gram models:
– Finite approximation of infinite context history

• Issues: Zeroes and other sparseness
• Strategies: Smoothing

– Laplace, add-K, Good-Turing, Kneser-Ney, etc
– Use partial n-grams: interpolation, backoff

• Refinements
– Class, cache, topic, trigger LMs

Smoothing
• Steal from the rich, give to the poor (probability mass)

Slide from Dan Klein

Laplace smoothing

• Also called add-one smoothing
• Just add one to all the counts!
• Pretend we saw each word one more time than we did

• MLE estimate:

• Laplace estimate:

• Reconstructed counts:

Laplace smoothed bigram counts

Laplace-smoothed bigrams

Reconstructed counts

Drawback of Laplace Technique

• Causes big change to counts
– Count of (want to) went from 608 to 238!
– Discount (c*/c) for “Chinese food” =.10!!! A 10x

reduction

• In general, Laplace is a blunt instrument
• Add-k is more fine-grained method
• Laplace smoothing not often used for N-

grams, as we have much better methods.

Better Smoothing Techniques

• Intuition: use the count of Words we’ve seen
once to help estimate the count of Words
we’ve never seen

• Intuition in many smoothing algorithms:
– Good-Turing
– Kneser-Ney (Most commonly used)
– Witten-Bell

Backoff and Interpolation

• Don’t try to account for unseen n-grams, just backoff to
a simpler model until you’ve seen it.

• Start with estimating the trigram: P(z | x, y)
– but C(x,y,z) is zero!

• Backoff and use info from the bigram: P(z | y)
– but C(y,z) is zero!

• Backoff to the unigram: P(z)

• How to combine the trigram/bigram/unigram info?

Backoff versus Interpolation

• Backoff: use trigram if you have it, otherwise
bigram, otherwise unigram

• Interpolation: always mix all three
– Simple interpolation

Katz Backoff

• Use the trigram probabilty if the trigram was
observed:
– P(dog | the, black) if C(“the black dog”) > 0

• “Backoff” to the bigram if it was unobserved:
– P(dog | black) if C(“black dog”) > 0

• “Backoff” again to unigram if necessary:
– P(dog)

LM Interpolation

• Given two LMs, P1 and P2, get a better probability
estimate by “Mixing” individual estimates:

• λ is estimated one held-out set to minimize perplexity.

• Can be generalized to more than 2 mixture components

• Combined probability will be high if it is high in at least
one of the component LMs

LM Adaptation

• Challenge: Need LM for new domain
– Have little in-domain data

• Intuition: Much of language is pretty general
– Can build from ‘general’ LM + in-domain data

• Approach: LM adaptation
– Train on large domain independent corpus
– Adapt with small in-domain data set

• What large corpus?
– Web counts! e.g. Google n-grams

LM Adaptation by Interpolation

• Interpolation (Mixing) can be used to combine
a large, but poorly matched LM with a small
LM that is matched to the target domain.

• Typical example:
• P1 is web LM
• P2 is a speech task domain

Cache LMs

• Because of topical coherence the same words tend to
reoccur in a stream of words

• Intuition: Words occurred recently, more likely to
reoccur again.

• Approach: Boost probabilities of recently seen words

• Implementation : interpolated LM where P2 is a
unigram LM of recently seen words

Parsing-based LMs

• Intuition: Current language models make no use of
the syntactic properties, Example:
– “Microsoft stock, which had been falling recently, |

went up today.”
– “recently” is a bad predictor of “went up”

• Approach: Use syntactic rather than textual
proximity to determine the history for predicting a
word

• Implementation: Needs parsing technology to
uncover syntactic structure

Discriminative LMs

• Idea : Choose n-gram weights to improve a
task, not to fit the training set

• Standard LM estimation relies on maximizing
the probability of generating the training data

• Better: if you have a classification task (e.g.,
speech recognition) maximize the probability
of the correct decision, taking other
knowledge sources (e.g., acoustic model) into
account

Class based Language Model

dog
cat bird

ran
jumped

walk
the

by a

class 1: Animal class 2: Verb class 3: Function word

W = “w1 w2 w3”

X P(w1|C(w1)) P(w2|C(w2)) P(w3|C(w3))

P(W) = P(w1|START) P(w2|w1) P(w3|w2)

C(wi): class of word wi

P(W) = P(C(w1)|START) P(C(w2)|C(w1)) P(C(w3)|C(w2))

Class based Language Model

P(class i | class j) and P(word w| class i) are
estimated from training data.

P(W) = P(F|START) P(A|F) P(V|A)
X P(the|F) P(dog|A) P(ran|V)

dog
cat bird

the
by a

W = “the dog ran”
A VF

class 1: Animal class 2: Verb class 3: Function word

ran
jumped

walk

65

Class based Language Model

P(ran|cat) is zero given the training data

the dog ran the cat jumped
A VF A VF

However, P(Verb | Animal) is not zero

P(class i | class j) and P(word w| class i) are
estimated from training data.

Training data

W = “the cat ran”
A VF

66

Neural Network-based LMs

• Y. Bengio et al. (2001, 2003)
• Encode words as real-valued vectors
• Train multi-layer perceptrons (neural nets) to

predict the next word from the word-codes of
previous N-1 words

• Train word encoding and predictor
simultaneously

• NNs learns to represent words that behave
similarly with similar codes

• Good generalization to unseen N-grams

Summary

• Language models assign a probability that a
sentence is a legal string in a language.

• They are useful as a component of many NLP
systems, such as ASR, OCR, and MT.

• Simple N-gram models are easy to train on
unsupervised corpora and can provide useful
estimates of sentence likelihood.

• MLE gives inaccurate parameters for models
trained on sparse data.

• Smoothing techniques adjust parameter
estimates to account for unseen words.

Thanks

Any Question?

