First Tbilisi International Summer School in Logic, Language, Artificial Intelligence

Language Modeling Techniques for Continuous Speech Recognition

> Bagher BabaAli University of Tehran

Introduction to speech recognition

Converting Speech to Text

Basic concepts of speech recognition

- Structure of speech
- Recognition process
- Main components of ASR
- Other used concepts
- Evaluation Criteria

Structure of speech

- Speech is a complex phenomenon.
- A dynamic process without clearly distinguished parts
- All modern descriptions of it are probabilistic
- Speech is a continuous audio stream with dynamically changed states.
- Phone => Subword => Word => Utterance

The Noisy Channel Model

Decoding model: find Message*= argmax P(Message|Signal) But how do we represent each of these things?

The Noisy Channel Model: Assumptions

- What is the most likely sentence out of all sentences in the language L, given some acoustic input O?
- Treat acoustic input O as sequence of individual acoustic observations

 $-0 = 0_1, 0_2, 0_3, \dots, 0_t$

• Define a sentence W as a sequence of words:

 $-W = W_1, W_2, W_3, \dots, W_n$

The Noisy Channel Model:

- Probabilistic implication: Pick the highest probable sequence: $\hat{W} = \underset{W \in L}{\operatorname{arg\,max}} P(W \mid O)$
- We can use Bayes rule to rewrite this: $\hat{W} = \arg \max \frac{P(O | W)P(W)}{P(W)}$

$$W = \underset{W \in L}{\operatorname{argmax}} P(O)$$

• Since denominator is the same for each candidate sentence W, we can ignore it for the argmax:

$$\hat{W} = \operatorname*{argmax}_{W \in L} P(O | W) P(W)$$

Math. formula representation of ASR

ASR, Statistical Approach

- Based on work on Hidden Markov Models done by Leonard Baum at IDA, Princeton in the late 1960s
- Purely statistical approach pursued by Fred Jelinek and Jim Baker, IBM T.J.Watson Research

<u>Fre</u>d Jelinek

Jim Baker

Recognition process

Speech Utterance

Components of an ASR System

- Corpora for training and testing of components
- Feature extraction component
- Pronunciation Model (Lexicon)
- Acoustic Model
- Language Model
- Algorithms to search hypothesis space efficiently (Decoder)

Acoustic model

- Connection between the acoustic information and phonetics
- Three approaches:
 - HMM-GMM
 - HMM-DNN
 - Pure DNN (End-to-end approach)

Acoustic model

• HMM-GMM

Acoustic model

End-to-End ASR System

- End-to-End (DNN),
- HMM is eliminated
- recognized word sequence directly from acoustic characteristic inputs
- Two common approaches:
 - Connectionist Temporal Classification (CTC)
 - Attention-based Encoder-Decoder

Phonetic dictionary

- Mapping from words to phones
- It might look like this:
 - hello H EH L OW
 - world W ER L D
- Alternative pronunciations.
 - the TH IH
 - the(2) TH AH

Language model

 A language model is used to restrict word search.

or

- The most common language model is n-gram language model
- Text database (Corpus)

If P(recognize speech) >P(wreck a nice beach) recognize speech Output = wreck a nice beach "recognize speech"

Language model Impact (Lee, 1988)

- Resource Management domain
- Speaker-independent, continuous-speech
- 997 word vocabulary
- Word-pair perplexity ~ 60 , Bigram ~ 20

	No LM	Word-Pair	Bigram
% Word Error Rate	29.4	6.3	4.2

Language model Applications

- Speech Recognition
- Machine Translation
- Optical Character Recognition (OCR) and Handwriting Recognition
- Language, Genre, Dialect and Authorship Identification
- Information Retrieval/ Search Engine
- Spell & Grammar Checker
- Predictive Keyboard

Other used concepts

- Lattice
- N-best lists
- Speech database
- Text databases
- Criteria for evaluation

take the train to Corning

Speech & Text databases

- Speech databases :
 - Amount of data, Type (Telephone or Microphone), number of speakers, quality
 - Used to train acoustic model
 - TIMIT, RM, WSJ, Switchboard, LibriSpeech
- Text databases :
 - Amount of data, Type (Monolingual or Multilingual)
 - Used to train language model
 - Brown Corpus, British National Corpus, Google Books N-gram Corpus, American National Corpus

Criteria for evaluation

- Word Error Rate (WER):
 - WER = (I + D + S) / N
 - S : number of substitutions
 - D : number of deletions
 - I : number of insertion
 - N : number of words in the reference
- Accuracy:
 - ACC = 1- (I + D + S) / N = 1 WER
- Go from Boston to Washington on December 29 vs.
 Go to Boston from Washington on December 29
- 2subst/8words * 100 = 25% WER or 75% Word Accuracy

Current Word Error Rates

Task	Vocabulary	Error (%)
Digits	11	0.5
WSJ read speech	5K	3
WSJ read speech	20K	3
Broadcast news	64,000+	10
Conversational Telephone	64,000+	20

language model

- Count-based LMs
 - Statistical based LMs, e.g. N-gram
 - Grammar based LMs, e.g. CFG
- Continuous-space language models
 - Neural based LMs

Grammar based LMs

- Grammar is not flexible
- Complicated to build

— ...

- Hard to modify to accommodate new data:
 - Add capability to make a reservation
 - Add capability to ask for help
 - Add ability to understand greetings
- Parsing input with large grammar is slow for realtime applications
- So...for large applications , n-gram models

Statistical language model

• Goal: compute the probability of a sentence or sequence of words:

$$P(w_1w_2\ldots w_n)$$

• How to compute this joint probability:

– Chain Rule of probability :

$$P(w_1 w_2 \dots w_n) = \prod_i P(w_i | w_1 w_2 \dots w_{i-1})$$

Markov Assumption

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i \mid w_{i-k} \dots w_{i-1})$$

• In other words, we approximate each component in the product as follows :

$$P(w_i | w_1 w_2 \dots w_{i-1}) \approx P(w_i | w_{i-k} \dots w_{i-1})$$

• Simplest case : unigram model

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i)$$

• Using ML estimation, probabilities are based on word counts:

$$p(w_i) = \frac{\operatorname{count}(w_i)}{\operatorname{count}(w)}$$

- Bigram model
- Condition on the previous word:

$$P(w_i | w_1 w_2 \dots w_{i-1}) \approx P(w_i | w_{i-1})$$

$$p(w_i|w_{i-1}) = \frac{\operatorname{count}(w_{i-1}, w_i)}{\operatorname{count}(w_{i-1})}$$

• Bigram model example

 $P(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})} \qquad \text{(s) fall Salit (j)} \\ <s> Salit Salit (j) \\ <s> Salit (j) \\ <s Salit (j) \\$

<s> I am Sam </s> <s> Sam I am </s> <s> I do not like green eggs and ham </s>

$$P(I|~~) = \frac{2}{3} = .67 \qquad P(Sam|~~) = \frac{1}{3} = .33 \qquad P(am|I) = \frac{2}{3} = .67~~~~$$
$$P(|Sam) = \frac{1}{2} = 0.5 \qquad P(Sam|am) = \frac{1}{2} = .5 \qquad P(do|I) = \frac{1}{3} = .33$$

- One more bigram model example
- Berkeley Restaurant Project sentences
 - can you tell me about any good cantonese restaurants close by
 - mid priced thai food is what i'm looking for
 - tell me about chez panisse
 - can you give me a listing of the kinds of food that are available
 - i'm looking for a good place to eat breakfast
 - when is caffe venezia open during the day

• Raw bigram counts:

	i	want	to	eat	chinese	food	lunch	spend
i	5	827	0	9	0	0	0	2
want	2	0	608	1	6	6	5	1
to	2	0	4	686	2	0	6	211
eat	0	0	2	0	16	2	42	0
chinese	1	0	0	0	0	82	1	0
food	15	0	15	0	1	4	0	0
lunch	2	0	0	0	0	1	0	0
spend	1	0	1	0	0	0	0	0

• Raw bigram probabilities:

	i	want	to	eat	chinese	food	lunch	spend
i	0.002	0.33	0	0.0036	0	0	0	0.00079
want	0.0022	0	0.66	0.0011	0.0065	0.0065	0.0054	0.0011
to	0.00083	0	0.0017	0.28	0.00083	0	0.0025	0.087
eat	0	0	0.0027	0	0.021	0.0027	0.056	0
chinese	0.0063	0	0	0	0	0.52	0.0063	0
food	0.014	0	0.014	0	0.00092	0.0037	0	0
lunch	0.0059	0	0	0	0	0.0029	0	0
spend	0.0036	0	0.0036	0	0	0	0	0

• Bigram estimates of sentence probabilities:

P(<s> I want english food </s>) =

P(I|<s>)

- × P(want|I)
- × P(english|want)
- × P(food|english)
- × P(</s>|food)
 - = .000031

- What kinds of knowledge?
 - P(english|want) = .0011
 - P(chinese|want) = .0065
 - P(to | want) = .66
 - P(eat | to) = .28
 - P(food | to) = 0
 - P(want | spend) = 0
 - P (i | <s>) = .25

• Trigram and other n-gram LMs use a longer contiguous history:

Building a language model

- Data collection
- Text cleanup
- Train/test separation
- Initial model estimation

$$P(w_i \mid w_{i-(n-1)}, \dots, w_{i-1}) = rac{\mathrm{count}(w_{i-(n-1)}, \dots, w_{i-1}, w_i)}{\mathrm{count}(w_{i-(n-1)}, \dots, w_{i-1})}$$

- Language model interpolation with generic model
- Language model pruning

Language Model Evaluation

- What is a good LM?
- How to estimate how good is a LM?
- Two approaches:
 - Extrinsic Evaluation, e.g. WER
 - Intrinsic Evaluation, e.g. Perplexity
- Data split
 - Training
 - Development
 - Test

Perplexity

- Higher Probability = Lower Perplexity = Better Prediction
- $PP(W) = P(w_1 w_2 \dots w_N)^{-\frac{1}{N}}$ $= \sqrt[N]{\frac{1}{P(w_1w_2\dots w_N)}}$ $PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1...w_{i-1})}}$ • Chain rule: $PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$ For Bigram:

Perplexity as branching factor

- Perplexity: as the weighted average branching factor of a language.
- Example: Let's suppose a sentence consisting of random digits
- What is the perplexity of this sentence according to a model that assign P=1/10 to each digit?

$$PP(W) = P(w_1 w_2 \dots w_N)^{-\frac{1}{N}}$$
$$= (\frac{1}{10}^N)^{-\frac{1}{N}}$$
$$= \frac{1}{10}^{-1}$$
$$= \frac{1}{10}$$

Perplexity

- Models trained on 38 million words from the Wall Street Journal (WSJ) using a 19,979 word vocabulary.
- Evaluate on a disjoint set of 1.5 million WSJ words.

N-gram Order	Unigram	Bigram	Trigram
Perplexity	962	170	109

Ngram Properties

- Using of N-gram is popular because :
 - Easy to implement, estimate
 - Fast run-time computation (table lookup)
 - Can be compiled into finite-state networks and used efficient in speech recognition search (composition with pronunciation and phone models)

Ngram Properties

- As the value of N is increased, the accuracy of the model increases.
- Considers limited size of context.
- Only works well if the test corpus looks like the training corpus (Overfitting).
- Training matrix is sparse, even for very large corpora.
- How to **Estimate** the likelihood of *unseen n-grams*

Advanced Techniques

- N-gram models:
 - Finite approximation of infinite context history
- Issues: Zeroes and other sparseness
- Strategies: Smoothing
 - Laplace, add-K, Good-Turing, Kneser-Ney, etc
 - Use partial n-grams: interpolation, backoff
- Refinements
 - Class, cache, topic, trigger LMs

Smoothing

- Steal from the rich, give to the poor (probability mass)
 - We often want to make predictions from sparse statistics:
 - P(w | denied the) 3 allegations 2 reports 1 claims 1 request 7 total
 - Smoothing flattens spiky distributions so they generalize better

Very important all over NLP, but easy to do badly!

Slide from Dan Klein

Laplace smoothing

- Also called add-one smoothing
- Just add one to all the counts!
- Pretend we saw each word one more time than we did
- MLE estimate:
- Laplace estimate:
- Reconstructed counts:

$$P(w_i) = \frac{c_i}{N}$$

$$P_{\text{Laplace}}(w_i) = \frac{c_i + 1}{N + V}$$

$$c_i^* = (c_i + 1) \frac{N}{N + V}$$

Laplace smoothed bigram counts

	i	want	to	eat	chinese	food	lunch	spend
i	6	828	1	10	1	1	1	3
want	3	1	609	2	7	7	6	2
to	3	1	5	687	3	1	7	212
eat	1	1	3	1	17	3	43	1
chinese	2	1	1	1	1	83	2	1
food	16	1	16	1	2	5	1	1
lunch	3	1	1	1	1	2	1	1
spend	2	1	2	1	1	1	1	1

Laplace-smoothed bigrams

$$P^*(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n) + 1}{C(w_{n-1}) + V}$$

	i	want	to	eat	chinese	food	lunch	spend
i	0.0015	0.21	0.00025	0.0025	0.00025	0.00025	0.00025	0.00075
want	0.0013	0.00042	0.26	0.00084	0.0029	0.0029	0.0025	0.00084
to	0.00078	0.00026	0.0013	0.18	0.00078	0.00026	0.0018	0.055
eat	0.00046	0.00046	0.0014	0.00046	0.0078	0.0014	0.02	0.00046
chinese	0.0012	0.00062	0.00062	0.00062	0.00062	0.052	0.0012	0.00062
food	0.0063	0.00039	0.0063	0.00039	0.00079	0.002	0.00039	0.00039
lunch	0.0017	0.00056	0.00056	0.00056	0.00056	0.0011	0.00056	0.00056
spend	0.0012	0.00058	0.0012	0.00058	0.00058	0.00058	0.00058	0.00058

Reconstructed counts

.

 \sim

$$c^*(w_{n-1}w_n) = \frac{[C(w_{n-1}w_n) + 1] \times C(w_{n-1})}{C(w_{n-1}) + V}$$

• I ·

.

	i	want	to	eat	chinese	food	lunch	spend
i	3.8	527	0.64	6.4	0.64	0.64	0.64	1.9
want	1.2	0.39	238	0.78	2.7	2.7	2.3	0.78
to	1.9	0.63	3.1	430	1.9	0.63	4.4	133
eat	0.34	0.34	1	0.34	5.8	1	15	0.34
chinese	0.2	0.098	0.098	0.098	0.098	8.2	0.2	0.098
food	6.9	0.43	6.9	0.43	0.86	2.2	0.43	0.43
lunch	0.57	0.19	0.19	0.19	0.19	0.38	0.19	0.19
spend	0.32	0.16	0.32	0.16	0.16	0.16	0.16	0.16

Drawback of Laplace Technique

- Causes big change to counts
 - Count of (want to) went from 608 to 238!
 - Discount (c*/c) for "Chinese food" = .10!!! A 10x reduction
- In general, Laplace is a blunt instrument
- Add-k is more fine-grained method
- Laplace smoothing not often used for Ngrams, as we have much better methods.

Better Smoothing Techniques

- Intuition: use the count of Words we've seen once to help estimate the count of Words we've never seen
- Intuition in many smoothing algorithms:
 - Good-Turing
 - Kneser-Ney (Most commonly used)
 - Witten-Bell

Backoff and Interpolation

- Don't try to account for unseen n-grams, just backoff to a simpler model until you've seen it.
- Start with estimating the trigram: P(z | x, y)
 - but C(x,y,z) is zero!
- Backoff and use info from the bigram: P(z | y)
 but C(y,z) is zero!
- Backoff to the unigram: P(z)
- How to combine the trigram/bigram/unigram info?

Backoff versus Interpolation

- **Backoff**: use trigram if you have it, otherwise bigram, otherwise unigram
- Interpolation: always mix all three
 - Simple interpolation

$$\hat{P}(w_n|w_{n-1}w_{n-2}) = \lambda_1 P(w_n|w_{n-1}w_{n-2}) + \lambda_2 P(w_n|w_{n-1}) \sum_i \lambda_i = 1 + \lambda_3 P(w_n)$$

Katz Backoff

 Use the trigram probability if the trigram was observed:

- P(dog | the, black) if C("the black dog") > 0

- "Backoff" to the bigram if it was unobserved:
 P(dog | black) if C("black dog") > 0
- "Backoff" again to unigram if necessary: – P(dog)

LM Interpolation

• Given two LMs, P1 and P2, get a better probability estimate by "Mixing" individual estimates:

 $P(w|h) = \lambda P_1(w|h) + (1 - \lambda)P_2(w|h)$

- λ is estimated one held-out set to minimize perplexity.
- Can be generalized to more than 2 mixture components
- Combined probability will be high if it is high in at least one of the component LMs

LM Adaptation

- Challenge: Need LM for new domain – Have little in-domain data
- Intuition: Much of language is pretty general — Can build from 'general' LM + in-domain data
- Approach: LM adaptation
 - Train on large domain independent corpus
 - Adapt with small in-domain data set
- What large corpus?
 - Web counts! e.g. Google n-grams

LM Adaptation by Interpolation

- Interpolation (Mixing) can be used to combine a large, but poorly matched LM with a small LM that is matched to the target domain.
- Typical example:
- P1 is web LM
- P2 is a speech task domain

Cache LMs

- Because of topical coherence the same words tend to reoccur in a stream of words
- Intuition: Words occurred recently, more likely to reoccur again.
- Approach: Boost probabilities of recently seen words
- Implementation : interpolated LM where P2 is a unigram LM of recently seen words

Parsing-based LMs

- Intuition: Current language models make no use of the syntactic properties, Example:
 - "Microsoft stock, which had been falling recently, went up today."
 - "recently" is a bad predictor of "went up"
- Approach: Use syntactic rather than textual proximity to determine the history for predicting a word
- Implementation: Needs parsing technology to uncover syntactic structure

Discriminative LMs

- Idea : Choose n-gram weights to improve a task, not to fit the training set
- Standard LM estimation relies on maximizing the probability of generating the training data
- Better: if you have a classification task (e.g., speech recognition) maximize the probability of the correct decision, *taking other knowledge sources* (e.g., acoustic model) *into account*

Class based Language Model

 $W = "W_1 W_2 W_3"$ C(W_i): class of word W_i

 $\frac{P(W) = P(w_1 | START) P(w_2 | w_1) P(w_3 | w_2)}{P(W) = P(C(w_1) | START) P(C(w_2) | C(w_1)) P(C(w_3) | C(w_2))}$ $X P(w_1 | C(w_1)) P(w_2 | C(w_2)) P(w_3 | C(w_3))$

Class based Language Model

W = "the dog ran" F A V

P(W) = P(F|START) P(A|F) P(V|A)X P(the|F) P(dog|A) P(ran|V)

P(class i | class j) and P(word w | class i) are estimated from training data.

Class based Language Model

P(class i | class j) and P(word w| class i) are estimated from training data.

Training data

P(ran|cat) is zero given the training data However, P(Verb | Animal) is not zero

Neural Network-based LMs

- Y. Bengio et al. (2001, 2003)
- Encode words as real-valued vectors
- Train multi-layer perceptrons (neural nets) to predict the next word from the word-codes of previous N-1 words
- Train word encoding and predictor simultaneously
- NNs learns to represent words that behave similarly with similar codes
- Good generalization to unseen N-grams

Summary

- Language models assign a probability that a sentence is a legal string in a language.
- They are useful as a component of many NLP systems, such as ASR, OCR, and MT.
- Simple N-gram models are easy to train on unsupervised corpora and can provide useful estimates of sentence likelihood.
- MLE gives inaccurate parameters for models trained on sparse data.
- Smoothing techniques adjust parameter estimates to account for unseen words.

Thanks

Any Question?